DHA, a member of the Omega-3 family of essential fatty acids, is 22 carbons long and has 6 double bonds with the n-3 configuration. In neuronal membranes, DHA accumulates in membrane phospholipids, particularly in aminophospholipids, phosphatidylethanolamine (PE), phosphatidylinositol (PI) and Phosphatidylserine (PS). DHA plays an important role in neuronal survival by modulating PS levels and by stimulating Neuroprotectin-D1 (NPD1) synthesis. The increase of PS concentration by DHA promotes the interaction of the PH domain of Akt with the plasma membrane, facilitating translocation and phosphorylation of Akt. Membrane translocation is an event that is a prerequisite for the full activation of Akt by enabling successive phosphorylation of Akt at Thr-308 and Ser-473 by PDK-1 in a PI3K- and PIP3-dependent manner...